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However, they suffer especially when data quality is low. is smooth and differentiable so it can directly be embedded into a neural SDE
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Penalization via a distance-aware uncertainty estimator enables NUNO outperforms SOTA in low-quality datasets and overall. NUNO’s learned MDPs are less conservative.
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Experimental Result 3: Model accuracy
0.6 NeoRL MuJoCo NSDES are more accurate than Gaussian ensembles.
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The distance-aware uncertainty estimate 7,4 on three synthetic datasets. The red points represent the Overall 70. 6 68 60.7 38.5 1 Oo-i
state-action samples in the dataset. Yellow indicates high uncertainty, while dark blue represents low ' ' '
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